Math extra practice problems \#1

1. Define the following 2π-periodic functions by their values for $-\pi<x<\pi$:

$$
\begin{array}{ll}
f(x)=x, & -\pi<x<\pi \\
g(x)=\left\{\begin{array}{ll}
1 & \text { if } x \text { is a rational number } \\
0 & \text { if } x \text { is an irrational number }
\end{array},\right. & -\pi<x<\pi
\end{array} 土 \begin{aligned}
& -\pi<x<\pi
\end{aligned}
$$

For each of the following statements, answer "True" or "False".
(a) By Dirichlet's pointwise convergence theorem, $S_{n} f(x) \rightarrow \frac{1}{2} f\left(x^{+}\right)+\frac{1}{2} f\left(x^{-}\right)$for all x.
(b) By Dirichlet's pointwise convergence theorem, $S_{n} g(x) \rightarrow \frac{1}{2} g\left(x^{+}\right)+\frac{1}{2} g\left(x^{-}\right)$for all x.
(c) By Dirichlet's pointwise convergence theorem, $S_{n} h(x) \rightarrow \frac{1}{2} h\left(x^{+}\right)+\frac{1}{2} h\left(x^{-}\right)$for all x.
(d) The Fourier series for f converges uniformly.
(e) The Fourier series for g converges uniformly.
(f) The Fourier series for h converges uniformly.
(g) The Fourier series for f converges with respect to L^{2} norm.
(h) The Fourier series for g converges with respect to L^{2} norm.
(i) The Fourier series for h converges with respect to L^{2} norm.
2. The following Fourier series holds for $-\pi \leq x<\pi$

$$
x(\pi-|x|)=\sum_{k \geq 0} \frac{8}{\pi(2 k+1)^{3}} \sin ((2 k+1) x)
$$

(a) Evalulate both sides of the above expression at $x=\pi / 2$ to get the the value of an infinite sum.
(b) Apply Parseval's identity to the functions to get the value of another infinite sum.
3. The graph below shows a 2π-periodic function $f(x)$. Where does the Fourier series for $f(x)$ overshoot the actual value of $f(x)$? For each of these points compute overshoot.

4. Give a Fourier series to the following 1-d heat problem where $u(x, t)$ is the temperature of a rod at position $0 \leq x \leq \pi$ and time $t \geq 0$.

$$
\begin{aligned}
u_{t} & =3 u_{x x} \\
u(x, 0) & =x / \pi \\
u_{x}(0, t) & =0 \\
u_{x}(\pi, t) & =0
\end{aligned}
$$

You can use any of the following Fourier series in your solution (The boundary conditions tell you which one to use).

$f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{-1}{\pi k} \sin (2 k x), \quad g(x)=\sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{\pi k} \sin (k x), \quad h(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{-4 \cos ((2 k+1) x)}{\pi^{2}(2 k+1)^{2}}$
5. Suppose that 3 standard 52 card decks of playing cards are shuffled together into a pile
(a) How many different 5 card poker hands could possibly be dealt from this pile?
(b) What is the probability of 5 -of-a-kind?
(c) What is the probability of 2 pairs?
6. Suppose that 10% of patients in a hospital have disease X. If a patient has disease X, there is a 90% chance he/she will test positive. If the patient does not have disease X , then there is a 95% chance he/she will test negative. If a patient tests positive, what is the conditional probability that he/she has disease X ?
7. Let $f(x)=x^{3}-2 x$ and X be a continuous random variable with Uniform $[0,2]$ distribution.
(a) What is the probability density of X ?
(b) Compute the expected value of $f(X)$.
8. Suppose a student is typing a document. On average, his typing has 0.23 errors per page. Suppose he types a ten page document. Let X be the number of errors he makes in typing this document.
(a) Explain why it is reasonable to model X with a Poisson random variable.
(b) Calculate the probability $P\{X \leq 1\}$
(c) Calculate the probability $P\{X>3\}$

