Math Homework \#4

1. Compute the Fourier transform of the following function

$$
f(x)=e^{-2|x|}+\mathbb{1}_{[0,2]}(x)
$$

(Recall that $\mathbb{1}_{[a, b]}$ is the function whose value is 1 for $a<x<b$ and 0 else.) Use the following identities to get your answer (you will not have to compute any integral).

$f(x)$	$\widehat{f}(\xi)$
$e^{-\|x\|}$	$\frac{1}{\pi\left(1+\xi^{2}\right)}$
$\mathbb{1}_{[-a, a]}(x)$	$\frac{\sin (a \xi)}{\pi \xi}$
$f(x-c)$	$e^{-i c \xi} \widehat{f}(\xi)$
$f(a x)$	$\frac{1}{a} \widehat{f}\left(\frac{\xi}{a}\right)$

2. Use the Cooley Tukey algorithm to calculate (by hand, as done in class) the discrete Fourier transform of the following sample (use a hand calculator at each step, rounding to two decimals; actually only the last step will really want a calculator).

$$
\begin{array}{c|cccccccc}
t & 0 & \pi / 4 & 2 \pi / 4 & 3 \pi / 4 & 4 \pi / 4 & 5 \pi / 4 & 6 \pi / 4 & 7 \pi / 4 \\
\hline x(t) & 1.23 & 0.45 & -0.23 & -0.10 & -0.79 & -0.43 & 0.25 & 0.15
\end{array}
$$

3. Compute the indefinite integral from zero to x of the distribution

$$
x+\delta_{-2}(x)-3 \delta_{5}(x)
$$

Your answer will be a piecewise function.
4. Compute the distributional derivative of the function

$$
f(x)=|x|+2 \mathbb{1}_{[4,7]}(x)
$$

5. Suppose X, Y are RV's with joint density

$$
f_{X, Y}= \begin{cases}2 e^{-x-y} & \text { if } 0<x<y \\ 0 & \text { else }\end{cases}
$$

(a) Compute the density of Y.
(b) Compute the conditional density $f_{X \mid Y}(x \mid y)$
(c) Calculate the conditional probability $P\{X>5 \mid Y=6\}$
(d) Compute the conditional probability $P\{X>5 \mid Y>6\}$.

