Math Homework \#3

1. Let X be a random variable with density

$$
f_{X}(t)= \begin{cases}C x^{-2} & \text { if } x>3 \\ 0 & \text { else }\end{cases}
$$

(a) Calculate the value of the constant C so that f_{X} is a probability density.
(b) Calculate the cumulative distribution function for X.
(c) Calculate the expectation value of X.
(d) Show that the expectation value of $E\left[X^{2}\right]=\infty$. Conclude from this that also $\operatorname{Var}(X)=$ $\infty, \sigma(X)=\infty$.
2. Consider the following gambling game: player A pays n dollars to player B. Then player A flips a fair coin, if it's "heads" he flips again; he keeps flipping until it falls "tails". Then player B pays 2^{k} dollars to player A, where k is the numbers of flips that were "heads".
(a) Show that the expected value for player B 's profit for one game is $-\infty$.
(b) Suppose that the following additional rule is added to the game: if A suceeds in flipping 40 heads in a row, then the game ends. Calculate the expected value of the new game for player B.
(c) Despite the expected profit of $-\infty$, most mathematicians would play the original game as B if n is sufficiently large, say $n=40$. Do you think this is a good idea, and why/ why not?
3. (Problem 5.21E from A first course in probability by Sheldon Ross; exact wording altered) Suppose that the height of a man is a normal random variable with parameters (measured in inches) $\mu=71, \sigma=2.5$. According to this model, calculate the percentage of men taller than $74^{\prime \prime}$, and $77^{\prime \prime}$.
4. Suppose that the random variable X has density

$$
f_{X}(x)= \begin{cases}4 e^{-4 x} & \text { if } x \geq 0 \\ 0 & \text { else }\end{cases}
$$

Calculate the expected value of $f(X)$, where the function f is defined by

$$
f(t)= \begin{cases}1 & \text { if } t \leq 5 \\ 0 & \text { else }\end{cases}
$$

5. Suppose that X is a random variable distributed uniformly on the interval $[1,3]$. Let Y be the random variable defined by $Y=e^{X}$. Calculate the density of Y.
6. Calculate the Fourier transforms of each of the following functions.

$$
\begin{aligned}
& f(x)= \begin{cases}1 & \text { if }-2<x<-1 \\
-3 & \text { if } 4<x<7 \\
0 & \text { else }\end{cases} \\
& g(x)= \begin{cases}e^{i x} & \text { if }-1<x<1 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

7. Suppose the Fourier transform of $a(x)$ is $\widehat{a}(\xi)=e^{-10 \xi^{2}}$. Calculate the function $a(x)$.
