Math Homework #3

1. Let X be a random variable with density

$$f_X(t) = \begin{cases} Cx^{-2} & \text{if } x > 3\\ 0 & \text{else.} \end{cases}$$

- (a) Calculate the value of the constant C so that f_X is a probability density.
- (b) Calculate the cumulative distribution function for X.
- (c) Calculate the expectation value of X.
- (d) Show that the expectation value of $E[X^2] = \infty$. Conclude from this that also $Var(X) = \infty$, $\sigma(X) = \infty$.
- 2. Consider the following gambling game: player A pays n dollars to player B. Then player A flips a fair coin, if it's "heads" he flips again; he keeps flipping until it falls "tails". Then player B pays 2^k dollars to player A, where k is the numbers of flips that were "heads".
 - (a) Show that the expected value for player B's profit for one game is $-\infty$.
 - (b) Suppose that the following additional rule is added to the game: if A succeeds in flipping 40 heads in a row, then the game ends. Calculate the expected value of the new game for player B.
 - (c) Despite the expected profit of $-\infty$, most mathematicians would play the original game as B if n is sufficiently large, say n = 40. Do you think this is a good idea, and why/ why not?
- 3. (Problem 5.21E from A first course in probability by Sheldon Ross; exact wording altered) Suppose that the height of a man is a normal random variable with parameters (measured in inches) $\mu = 71, \sigma = 2.5$. According to this model, calculate the percentage of men taller than 74", and 77".
- 4. Suppose that the random variable X has density

$$f_X(x) = \begin{cases} 4e^{-4x} & \text{if } x \ge 0\\ 0 & \text{else} \end{cases}$$

Calculate the expected value of f(X), where the function f is defined by

$$f(t) = \begin{cases} 1 & \text{if } t \le 5\\ 0 & \text{else} \end{cases}$$

- 5. Suppose that X is a random variable distributed uniformly on the interval [1,3]. Let Y be the random variable defined by $Y = e^X$. Calculate the density of Y.
- 6. Calculate the Fourier transforms of each of the following functions.

$$f(x) = \begin{cases} 1 & \text{if } -2 < x < -1 \\ -3 & \text{if } 4 < x < 7 \\ 0 & \text{else} \end{cases}$$
$$g(x) = \begin{cases} e^{ix} & \text{if } -1 < x < 1 \\ 0 & \text{else} \end{cases}$$

7. Suppose the Fourier transform of a(x) is $\hat{a}(\xi) = e^{-10\xi^2}$. Calculate the function a(x).