Math exam \#1

1. A 2π-periodic function $f(x)$ is defined by its values for $-\pi \leq x<\pi$ by

$$
f(x)= \begin{cases}1 & \text { if }-\pi \leq x<0 \\ -1 & \text { if } 0 \leq x<\pi\end{cases}
$$

Calculate a Fourier series representation for this function.
(Your answer must be of the form $f(x)=$ some infinite series)
2. Define the following 2π-periodic functions by their values for $-\pi<x<\pi$:

$$
\begin{array}{ll}
f(x)=|x|, & -\pi<x<\pi \\
g(x)=|x|^{-1 / 4} & -\pi<x<\pi
\end{array}
$$

For each of the following statements, answer "True" or "False".
(a) By Dirichlet's pointwise convergence theorem, $S_{n} f(x) \rightarrow \frac{1}{2} f\left(x^{+}\right)+\frac{1}{2} f\left(x^{-}\right)$for all x.
(b) The Fourier series for f converges uniformly.
(c) The Fourier series for f converges with respect to L^{2} norm.
(d) By Dirichlet's pointwise convergence theorem, $S_{n} g(x) \rightarrow \frac{1}{2} g\left(x^{+}\right)+\frac{1}{2} g\left(x^{-}\right)$for all x.
(e) The Fourier series for g converges uniformly.
(f) The Fourier series for g converges with respect to L^{2} norm.
3. The following Fourier series holds for $-\pi \leq x<\pi$

$$
x^{2}=\frac{\pi^{2}}{3}+\sum_{k \geq 1} \frac{4(-1)^{k}}{k^{2}} \cos (k x)
$$

(a) Evalulate both sides of the above expression at $x=0$ to get the the value of an infinite sum.
(b) Apply Parseval's identity to find the value of the infinite sum $\sum_{k=1}^{\infty} \frac{1}{k^{4}}$.
4. The graph below shows a 2π-periodic function $f(x)$. Where does the Fourier series for $f(x)$ overshoot the actual value of $f(x)$? For each of these points compute overshoot.

5. Give a Fourier series to the following 1-d heat problem where $u(x, t)$ is the temperature of a rod at position $0 \leq x \leq \pi$ and time $t \geq 0$.

$$
\begin{aligned}
u_{t} & =3 u_{x x} \\
u(x, 0) & =x / \pi \\
u(0, t) & =0 \\
u(\pi, t) & =0
\end{aligned}
$$

You can use any of the following Fourier series in your solution (The boundary conditions tell you which one to use).

$$
f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{-1}{\pi k} \sin (2 k x), \quad g(x)=\sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{\pi k} \sin (k x), \quad h(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{-4 \cos ((2 k+1) x)}{\pi^{2}(2 k+1)^{2}}
$$

6. Suppose that all of the cards J,Q,K,A are removed from a standard 52 card deck (so that the the remaining cards are $2,3,4, \ldots, 9$ of each suit).
(a) How many different 5 card poker hands could possibly be dealt from this pile?
(b) What is the probability of 4-of-a-kind?
(c) What is the probability of 2 pairs?
7. In Spring training, baseball players from the major leagues and minor leagues play in the same games. Suppose that in a certain league we have the following statistics: minor league players get hits in 22% of their at bats, and major league players get hits in 29% of their at bats. Furthermore, suppose that 40% of the at bats are by major league players. If in a particular at bat a player gets a hit, what is the conditional probability that he is a minor league player?
8. Let $f(x)=e^{x}$ and X be a continuous random variable with Uniform $[-1,1]$ distribution.
(a) What is the probability density of X ?
(b) Compute the expected value of $f(X)$.
(c) Compute the cumulative distribution function for X
9. Suppose a student is typing a document. On average, his typing has 0.15 errors per page. Suppose he types a five page document. Let X be the number of errors he makes in typing this document.
(a) Explain why it is reasonable to model X with a Poisson random variable.
(b) Calculate the probability $P\{X \leq 2\}$
(c) What is the expected value of X ?
