Riemann-Hilbert method
for computing e,



Steepest descent for Hermite polynomials
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Riemann Hilbert problem (RHP) for Y:
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“Steepest descent” for RHP
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“Steepest descent” for RHP
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Riemann Hilbert contours for S:
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(There is an explicit but complicated formula for the jump
matrices along these contours.)



Extracting e, from the RHP
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e; formula from RHP
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Where h is the polynomial part of the equilibrium measure:
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Ok, but can we get an EMcLP-type formula from this?



Valence independent formula for the equilibrium measure
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Results of RH method

m Same valence independent formulas for e; are obtained
m Hand calculation of e; easier by RH method

m Sharpening the qualitative valence indep. formula obtained
from the string equations would require understanding some
cancellation in valence indep. formula for eq. measure.



