Riemann-Hilbert method for computing e_{g}

Steepest descent for Hermite polynomials

$$
p_{n}(2 \sqrt{n} \lambda)=\frac{n!}{2 \pi i} n^{-n / 2} \oint_{C} \exp \left\{-n\left(\log s+2 \lambda s-\frac{1}{2} s^{2}\right)\right\} \frac{d s}{s}
$$

RHP for OP's

$$
Y=\left(\begin{array}{ll}
p_{n} & C\left\{p_{n} e^{-N V}\right\} \\
\frac{-2 \pi i}{\left\|p_{n-1}\right\|^{2}} p_{n-1} & \frac{-2 \pi i}{\left\|p_{n-1}\right\|^{2}} C\left\{p_{n-1} e^{-N V}\right\}
\end{array}\right)
$$

($C=$ Cauchy transform)

RHP for OP's

$$
Y=\left(\begin{array}{ll}
p_{n} & C\left\{p_{n} e^{-N V}\right\} \\
\frac{-2 \pi i}{\left\|p_{n-1}\right\|^{2}} p_{n-1} & \frac{-2 \pi i}{\left\|p_{n-1}\right\|^{2}} C\left\{p_{n-1} e^{-N V}\right\}
\end{array}\right)
$$

($C=$ Cauchy transform)
Riemann Hilbert problem (RHP) for Y :

$$
\left(\begin{array}{ll}
1 & e^{-N V(\lambda)} \\
0 & 1
\end{array}\right)
$$

"Steepest descent" for RHP

$$
\begin{aligned}
& Y=\frac{1}{2}\left(\begin{array}{ll}
e^{-N I / 2} & 0 \\
0 & e^{N I / 2}
\end{array}\right) S \\
& \quad \times\left(\begin{array}{ll}
\gamma+\gamma^{-1} & -i \gamma+i \gamma^{-1} \\
i \gamma-i \gamma^{-1} & \gamma+\gamma^{-1}
\end{array}\right)\left(\begin{array}{ll}
e^{N I / 2+n g} & 0 \\
0 & e^{-N I / 2-n g}
\end{array}\right)
\end{aligned}
$$

"Steepest descent" for RHP

$$
\begin{aligned}
& Y=\frac{1}{2}\left(\begin{array}{ll}
e^{-N I / 2} & 0 \\
0 & e^{N I / 2}
\end{array}\right) S \\
& \quad \times\left(\begin{array}{ll}
\gamma+\gamma^{-1} & -i \gamma+i \gamma^{-1} \\
i \gamma-i \gamma^{-1} & \gamma+\gamma^{-1}
\end{array}\right)\left(\begin{array}{ll}
e^{N I / 2+n g} & 0 \\
0 & e^{-N I / 2-n g}
\end{array}\right)
\end{aligned}
$$

Riemann Hilbert contours for S :

(There is an explicit but complicated formula for the jump matrices along these contours.)

Extracting e_{g} from the RHP

$$
e_{1}=C_{1}-\frac{1}{6} \log z-\frac{i}{\sqrt{z}} \partial_{x}^{-1}\left(N^{-1} \text { term of } \frac{1}{2 \pi i} \oint_{\infty} S_{12}(\lambda) d \lambda\right)
$$

Extracting e_{g} from the RHP

$$
\begin{aligned}
e_{1}= & C_{1}-\frac{1}{6} \log z-\frac{i}{\sqrt{z}} \partial_{x}^{-1}\left(N^{-1} \text { term of } \frac{1}{2 \pi i} \oint_{\infty} S_{12}(\lambda) d \lambda\right) \\
e_{g}= & C_{g}+\frac{B_{2 g}}{(2 g)!} \partial_{x}^{2 g-2} \log z \\
& +\sum_{m=0}^{2 g-2} \frac{B_{m}}{m!}\left(N^{m+1-2 g} \text { term of } \log \left\{1-\frac{z^{-1 / 2}}{2 \pi} \oint_{\infty} S_{12}(\lambda) d \lambda\right\}\right)
\end{aligned}
$$

e_{1} formula from RHP

$$
\partial_{x} e_{1}=\frac{2 h(\alpha)-3 \sqrt{z} h^{\prime}(\alpha)}{-48 z h(\alpha)^{2}}+\frac{2 h(\beta)+3 \sqrt{z} h^{\prime}(\beta)}{-48 z h(\beta)^{2}}
$$

Where h is the polynomial part of the equilibrium measure:

$$
\psi(\lambda)=\frac{1}{2 \pi} \sqrt{\lambda-\alpha} \sqrt{\beta-\lambda} h(\lambda)
$$

Ok, but can we get an EMcLP-type formula from this?

Valence independent formula for the equilibrium measure

$$
\begin{aligned}
h^{(k)}(\beta) & =\frac{k!}{x} \sum_{m=1}^{k+1}(2 \sqrt{z})^{m-k-1}\left(c_{k, m}^{(\phi)} \phi_{m}+c_{k, m}^{(\psi)} z^{-1 / 2} \psi_{m}\right) \\
\frac{(\xi+1)^{k+1}}{\left(\xi^{2}-1\right)^{k+3 / 2}} & =\sum_{m=0}^{k+1} \partial_{\xi}^{m} \frac{c_{k, m}^{(\phi)}-\xi c_{k, m}^{(\psi)}}{\sqrt{\xi^{2}-1}} \\
\binom{\phi_{m}}{\psi_{m}} & =\left[\frac{1}{\left(z^{\prime}\right)^{2}-z\left(u^{\prime}\right)^{2}}\left(\begin{array}{ll}
-z u^{\prime} & z^{\prime} \\
z z^{\prime} & -z u^{\prime}
\end{array}\right) \partial_{x}\right]^{m}\binom{0}{x}
\end{aligned}
$$

Results of RH method

■ Same valence independent formulas for e_{g} are obtained

- Hand calculation of e_{1} easier by RH method
- Sharpening the qualitative valence indep. formula obtained from the string equations would require understanding some cancellation in valence indep. formula for eq. measure.

